
REPORT DOCUMENTATION PAGE 
Form Approved 

OPM No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions 
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to 
the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.  

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

July 1996 
3. REPORT TYPE AND DATES COVERED 

Transmittal document 
4. TITLE AND SUBTITLE 

Inverse Scattering Methods for Reconstructing Fluids 

6. AUTHOR(S) 

Daniel Rouseff 

5. FUNDING NUMBERS 

N00014-94-1-0286 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Applied Physics Laboratory 
University of Washington 
1013 NE 40th Street 
Seattle, WA 98105-6698 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Defense Technical Information Center 
8725 John J. Kingman Road 
Suite 0944 
Ft. Belvoir, VA 22060-6218 

11. SUPPLEMENTARY NOTES 

Reprint of paper submitted to fulfill grant obligation. 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

19960805 087 
12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

The reconstruction of a two-dimensional moving fluid from acoustic transmission measurements is considered. The fluid is 
described by both a scalar index of refraction and a vector velocity. If the measured data are assumed to be straight-ray geomet- 
ric projections of the flow, it is known that inversion for the vector velocity is an underdetermined problem. In the present work, 
it is shown that if the measured data are assumed to satisfy a linearized time-harmonic wave equation, then a unique inversion for 
the vector velocity is possible. This result is a distinctly finite wavelength effect indicating why ray-based methods fail to pro- 
duce a complete reconstruction. A filtered backpropagation algorithm for the tomographic reconstruction of the vector flow field 
is derived. 

14. SUBJECT TERMS 

Tomography, flow inversion, vector reconstruction, diffraction 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

15. NUMBER OF PAGES 

11 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
299-01 



Inverse Problems 10 (1994) 687-697. Printed in the UK 

Two-dimensional vector flow inversion by diffraction 
tomography 

Daniel Rouseff and Kraig B Winters! 
Applied Physics Laboratory, College of Ocean and Fishery Sciences, University of 
Washington, Seattle, WA 98105, USA 

Received 17 November 1993 

Abstract. The reconstruction of a two-dimensional moving fluid from acoustic transmission 
measurements is considered. The fluid is described by both a scalar index of refraction and a 
vector velocity. If the measured data are assumed to be straight-ray geometric projections of 
the flow, it is known that inversion for the vector velocity is an underdetermined problem. In 
the present work, it is shown that if the measured data are assumed to satisfy a linearized time- 
harmonic wave equation, then a unique inversion for the vector velocity is possible. This result is 
a distinctly finite wavelength effect indicating why ray-based methods fail to produce a complete 
reconstruction. A filtered backpropagation algorithm for the tomographic reconstruction of the 

vector flow field is derived. 

1. Introduction 

Consider an acoustic wave probing a moving fluid. In general, both the scalar index 
of refraction and the vector velocity describing the flow will be spatially varying with 
both fields affecting the transmitted acoustic wave. Assume the flow can be probed from 
many different directions. The inverse problem is to process the measured acoustic data to 
recover both the index of refraction and the velocity of the intervening fluid. Non-intrusive, 
tomographic flow inversion has a variety of practical applications including biomedical 
imaging, industrial or laboratory process monitoring and measuring ocean turbulence. 

Flow inversion requires the reconstruction of both scalar and vector fields. Compared 
to scalar inversion, relatively little research has been done on vector reconstruction. An 
early study of flow imaging was conducted by Johnson et al []]. They measured the 
acoustic time-of-flight between transmitting and receiving arrays. Neglecting refraction 
and diffraction, the data were assumed to be straight-ray, geometric projections of the 
flow along the transmission paths. Averaging the time-of-flight measurements from 
opposing directions approximately cancelled the effects of fluid motion. The scalar index 
of refraction was then reconstructed using standard techniques. Taking the difference 
between opposing measurements yielded projections of that component of flow velocity 
tangential to the direction of transmission. Efforts to reconstruct the flow velocity, 
however, meet with limited success. Norton [2] later showed that only the divergence- 
free (solenoidal) component of a two-dimensional vector field could be recovered from 
tomographic experiments. Consequently, full velocity inversion is underdetermined if a 
straight-ray forward model is assumed. Winters and Rouseff [3] showed that the transverse 
component of fluid vorticity could be recovered and derived a spatial domain inversion 
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algorithm. A discrete version of this algorithm was tested on simulated flow fields typical 
of turbulent mixing in the upper ocean thermocline [4]. 

In each of the cited references, a straight-ray model was used for the forward problem. 
Clearly, this is an approximation. In a more accurate approach, an acoustic wave would be 
modelled by an acoustic wave equation. A tomographic method that uses a wave equation 
in the forward model is called diffraction tomography [5]. In the present work, we show 
that a two-dimensional vector flow field can be reconstructed using diffraction tomography. 
Thus an inverse problem that is apparently underdetermined using a simple forward model 
can be solved using a more accurate forward model. A filtered backpropagation algorithm 
for the vector velocity is derived. The vector inversion algorithm is shown to differ in 
several ways from the scalar inversion procedure derived by Devaney [6]. 

2. Diffraction tomography for flow inversion 

Consider the propagation of sound through a two-dimensional moving fluid. The fluid is 
characterized by a scalar index of refraction n(r) and a velocity vector u = («, v). Here 
r = (x, >•) is the spatial position vector and u(r) is scaled by the reference sound speed 
C0. As a forward scattering model, the total time-harmonic exp(-iatf) acoustic pressure pt 

is assumed to satisfy 

[V2 + k2]p{(r) = -k2F(r)pt(r) - 2\ku(r) • VPl(r) (l) 

where F(r) = [n2(r) - 1] is the scattering function and k = co/C0 is the reference 
wavenumber. This expression can be derived via a perturbation analysis from the 
conservation of momentum and the conservation of mass relationships [7]. Equation (1) 
neglects non-linear terms involving the flow velocity. A similar starting point was used by 
Norton in a study of transient scattering by stratified fluids [8]. The total pressure can be 
decomposed into the sum of the known incident field p, ensonifying the medium and the 
resulting scattered field p. The integral solution to (1) is 

Pt = P\ + p (2) 

where 

p(r) = I j dr' [k2F(r')pt(r') + 2\ku{r') ■ VPl(r')]H^(k\r - r'\)      (3) 

and where //,<    is the Hankel function of the first kind and order zero. The integration is 
over the scattering domain. 

Assume the scattering geometry shown in figure I. The incident field is a unit amplitude 
plane wave propagating in the direction of the unit vector fj. The acoustic pressure is 
measured along a linear receiving array at ij = L where the scattering domain is confined 
to a circular region of radius less than L. The mean flow velocity taken over the scattering 
domain is assumed to be zero. Denote the measured scattered field as p0(£) where the 
subscript shows the explicit dependence of the measurement on the view direction (p. 
For weak scattering, (3) can be linearized by making the Born approximation [9] and 
the unknown total field in the integrand replaced by the known incident field. The resulting 
measured scattered field is 

P+(S) = -4- / dr' [*V) - 2V • u(r')]ek"'H^\kR) (4) 
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r\ = L 

689 

SC(x,y), u(x,y) 
<,ikn 

Figure 1. Schematic of acoustic transmission experiment. Incident plane wave p\ probes moving 
fluid characterized scalar sound speed perturbation SC and vector velocity u. The coordinate 
system (£, 17) is denned by the probing direction tp. Coherent scattered field p^) measured at 

IJ = L. 

where R2 = (£ - £')2 + (£ - ?7')2 and the integration is with respect to the fixed (unrotated) 
coordinates r' = (x', >■')■ 

We assume the fluid can be probed from a continuum of view directions <f> e [0, In). 
The objective is to use this data set and the assumed forward scattering model (4) to recover 
the scattering potential F and both components of the vector velocity u. The relationship 
between the measured pressure and the unknowns can be expressed more simply in the 
Fourier domain. Define the one- and two-dimensional transforms 

M£)e-"* d£ f mix) = / 

/co     roo 
/     F(x,y)s-ilk'x+k'y)dxdy. 

■OO J — CO 

(5) 

Taking the transform of (4) yields 

i&2 <z'yL   - 
I-L(K-) = [F(a, ß) + 2sm<pü(a, ß) - 2cos<l>v(a,-ß)] 

2    y 
(6) 

where 

kia 

Y = y/k2 - K2 

a = K cos(/> + {k - y)sin0 

ß = K sin <t> + (y - k) cos <p. 

(7) 

Note that the pressure transform depends not only on the scattering function but also each 
component of velocity. The relative contribution from each velocity component depends 
explicitly on the view angle.  The restriction \K\ ^ k can be interepreted as ignoring the 
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evanescent component of the scattered field. Equation (6) is derived by using an integral 
form of the Hankel function [10] 

/oo 

y-'exp[i[K(f-$') + y(i.->7')]]<k. 
■oo 

(8) 

For convenience, define the filtered scattered field as 

-•K.-i, D*{K) = we~iyL^(K)-' (9) 

Consider the scattered field measured from direction (p + n. If the medium is lossless, 
the scattering function and the velocity are real functions. The associated transforms will 
display a conjugate symmetry [11], e.g. F(a, ß) = F*(-a, -ß). From (6H9), 

Ö;+n OO = [F(a, ß)-2 sin <j>ü(a, ß) + 2cos 4>v(a, ß)]. (10) 

Taking the average of the filtered pressure data from opposing views yields 

ä0(K) = {[D,p(K) + D;+n(K)] 

= F(a,ß). 
(11) 

Equation (II) shows that by appropriately combining data from opposing views the 
effects of the fluid motion can be removed. It is well known that if a simple ray model 
is used in the forward scattering problem, the measured time-of-flight data from opposing 
views are simply averaged to remove the first order effects of motion [1]. For the wave 
equation approach taken here, the measured data from each view are a coherent (complex) 
pressure field and the more complicated processing implied by (9)-(l 1) is required. 

The known 5^,{K) maps onto a semicircle of radius k in the Fourier space of F (figure 2). 
This type of mapping between the measured data and the unknown was first derived by Wolf 
[ 12]. By making measurements over a continuum of view angles, Fourier space is effectively 
'filled' out to a radius of -Jlk. The inverse transform of this data is then interpreted as 
a low-pass filtered version of the true scattering function. Physically, the reconstruction is 
low-pass filtered because details of the medium significantly smaller than the wavelength of 
the probing wave cannot be recovered. Assuming a stationary medium, Devaney [6] showed 
how to combine the measurements in a filtered backpropagation reconstruction algorithm. 
Equation (II) suggests that by first preprocessing the data by combining opposing views, a 
similar reconstruction algorithm for the scattering function could be derived for a moving 
medium. The development closely parallels Devaney's derivation and is omitted here for 
brevity. 

Averaging opposing views removed the influence of the velocity and allowed the 
scattering function to be reconstructed. Taking the difference between opposing views, 

Ä*-(K) = -ii[D*(*)-Ö;+jr(K)l 
(12) 

= i sin <pü(a. ß) — i cos cpv(a, ß) 

removes the effect of the scattering function. The known K^(K) is a linear combination 
of the unknowns ü and v taken along semicircles in their respective Fourier spaces. The 
objective is to separate these two contributions and reconstruct the individual components 
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Figure 2. Fourier domain mapping for the scattering function F. The measured scattered fields 
from opposing directions are Fourier transformed, filtered and appropriately combined to yield 
(T^(K). This function maps onto a semicircle in the Fourier space of F. 

of the vector velocity. To accomplish this separation, a second relationship between ü(a, ß) 
and v(a, ß) is required. 

For the special case of a divergence free flow, the isolation of the two velocity 
components is easily achieved. In Fourier space, a divergence free flow satisfies 

aü(a,ß)+ß v(a,ß) = 0. (13) 

Taken together, (12) and (13) constitute two equations for the two unknown velocity 
components. 

The reconstruction becomes more complicated if it is not known a priori that the flow 
is divergence free. Assuming a straight-ray acoustics model, Norton [2] showed for this 
more general case that the two velocity components could not be isolated; vector inversion 
for this forward model is an underdetermined problem. We now show that by using the 
wave-based forward scattering model in (4), the inversion can be performed. 

Consider any point (a. ß) in the Fourier spaces of ü and v where 0 < a2 + ß2 < 2k2. 
It is clear that two data arcs will pass through this point (figure 3). Let K = kcosx- It can 
be shown that 

A0(£cosx) = isin0i7(a, ß) - \cos,cj)v{a, ß) 

Ä0(-k cos x) = \coa(4> + x)ü(a. ß) + \sin(cp + X)v(a, ß) 

where 

Using (7), the point (a. ß) can be written in terms of the two angles 

a — k sin 0 + k cos(0 + x) 

ß = —A-cos0 + Ä:sin(0 + x)- 

(14) 

(15) 

(16) 



692 D Rouseffand K B Winters 

The system of equations in (14) can be solved except when x — TT/2- From figure 3, this 
corresponds in frequency to a = ß = 0, or, in the spatial domain, to the mean value of the 
flow that is taken to be zero. Solving (14) yields 

«(* ß) 
v(a, ß) 

—I 

cosx 
sin(0 + x) 

-cos(</> + x) 
cos</> 
sirup 

A^cosx) 
Ä0(-^cosx) 

(17) 

Figure 3. Fourier domain mapping for the vector velocity components. Data from experiments 
at view angles 0 and 0 + x + 7r/2 intercept at point (a, ß). 

Equation (17) is a distinctly finite wavelength result. To show this, note that the radii of 
the semicircles in figure 3 are equal to k and hence would increase linearly with frequency. 
In the high frequency limit, the two semicircles approach straight lines that can then intercept 
only at the origin. Consequently, a forward model that assumed an infinite frequency, i.e. 
ray theory, would not be able to separate the two components of velocity; this is consistent 
with Norton's result [2]. 

Equation (17) also suggests that there is not a simple one-to-one mapping between 
the measured data at a single view and the unknown functions. To recover a particular 
point (a, ß), the processed data Ä must be used from two angles. From (12), each A 
in turn depends on measurements made from opposing directions. Hence to isolate a 
single point in the Fourier space of either velocity component, data from four views must 
be appropriately processed and combined. The process of combining various views and 
generating a reconstruction can be implemented in a filtered backpropagation algorithm. 

3. Filtered backpropagation algorithm for vector velocity 

A tomographic reconstruction algorithm is directly tied to the assumed transmission model 
for the forward problem. If the data are assumed to be simple projections of the unknown, 
the reconstruction is often generated by filtered backprojection. The measured projections 
from each view are first filtered and then backprojected along straight ray paths throughout 
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the image space. Superimposing the individual images yields the reconstruction. If the 
measured data are assumed to satisfy a wave equation, backprojection must be replaced 
by backpropagation. In backpropagation, the measured data are propagated through the 
image space using a range-dependent propagation kernel that compensates for diffraction in 
the forward problem. Devaney derived the original filtered backpropagation algorithm for 
reconstructing the scalar index of refraction for a stationary medium [6]. 

In this section, a filtered backpropagation algorithm for the vector velocity is derived. 
Following Devaney, we assume the measured data from each view are continuous and noise 
free and that the medium can be probed over a continuum of view directions. The result is 
a closed form inversion that is exact to within the assumed forward scattering model and 
that can be compared to the stationary medium result. 

The low-pass filtered version of the x-component of velocity is defined by 

«ip(*. >') = ^2 / / *(«. ß)Jiax+ßy) dot dß (18) 

where 9* : 0 < a2 + ß2 < 2k2. The variables of integration are changed to the angles (j> 
and x- Calculating the Jacobian from (16) yields 

dad/3 = Är|cosx|d0dx (19) 

and (18) becomes 

„,„(*. y) = il r d4> f ^dx COS(X)K(«, /J)ei("+W (20) 
4?rz J0 Jo 

where the limits on the / integration allow the absolute value from the Jacobian to be 
dropped. Using the expression for ü(u, ß) from (17) yields 

«ipU. >•) = «(n + «t2> (2D 

where 

„(M = _!^  f2!T
d(p r

/_
dx sin(0 + x)A0(^osx)ei(o^-v) (22). 

4TT
2
 J0 JO 

„(2) = zl^L r # f ^ dX cos(0)Ä„(-* cos x)eiMv>. (23) 
47T-   Jo J() 

Equation (23)-is rewritten in two steps. First, re-order the integrations and change variables 
from (p to 0 via (15): 

_:;.2    fit 12 /./+57r/2 

„(2) = _!1./      dX / d6 sin«? - x)Äff(-*cos x)ei(,"+Av) (24) 
4?r-  JO Jx+n/2 

where a and ß from (16) are expressed in the new variables. Since the integrand is periodic 
in 0 with period 2JT, the limits can be changed to [0, In). Again reordering the integrations 
and letting x' = ^ - X yields 

„(2) = ^1  f2" d0 f dX' sin«? + x')Äf)(^cosx')ei(0^•v, (25) 
4?r- Jo /T/2 
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where a and ß are again expressed in the new variables. Comparing (22) and (25) shows 
that they differ only in sign and on the limits of integration. Recombining via (21) gives 
finally 

— \k2    f2lT f I COSY I 
"■p(*' y) = TT /     d<t> /   dX L—— sin(0 + x)Ä^cosx)e,(<"+^-v). (26) 

47TZ Jo J0 cosx 

A similar development for the ^-component of velocity gives 

iifc2   f2"       f       I cosy I 
M*. ?> = -r-j /     d<t>      dX  cos(0 + X)Ä,(* cos xW(ax+ßy). (27) 47r   Jo Jo cosx 

Both low-pass reconstructions are real functions. To simplify the development, define the 
complex combination of the two reconstructions as 

Z(x, y) = M|p(x, y) + iuip(jc, y). (28) 

By taking the real and imaginary parts of Z(x, y), low-pass filtered versions of the velocity 
components u(x,y) and v(x,y) are extracted, respectively. Returning to the original 
variable K = k cos x and combining (26)-(28) yields 

Z(x,y) = ^j    d./.e1* f  dKy-lsgn(K)(K + \y)Äi(K)e;,lax+Py)      (29) 

where sgn is the sign function [11] taking values +1 for K > 0 and -1 for K < 0. 
Two observations can be made from (29). First, the integrand depends on Ä at the 

single view angle (p. The explicit combination of data at view angles </> and 9 suggested 
by (21) has been built implicitly into the reconstruction algorithm. Second, the result is 
similar in form to the standard filtered backpropagation algorithm: data from the various 
views are filtered, backpropagated and combined by integrating over cj>. In contrast to the 
standard result, however, here the various views are phase shifted by the factor e1*. The 
need for this bias is suggested by the forward problem. For a given view angle, only those 
components of velocity tangential to the incident plane wave, i.e. fj • (ux + vy), contribute 
to the scattered field. The bias in the inversion compensates for the bias in the forward 
problem. 

From (12), Ä^(/c) is a filtered combination of the scattered field data taken from 
opposing views. This preprocessing step effectively removes the contribution from the 
scalar index of refraction on the scattered field. Since in some practical applications this 
contribution can be an order of magnitude greater than that from the vector velocity [13, 14], 
its explicit cancellation may be desirable for stability in the inversion. For the ideal noise 
free case considered here, preprocessing is not required and an inversion algorithm can 
operate directly on the measured pressure. A convolutional backpropagation algorithm is 
now derived that operates in the spatial domain on the untransformed data. Substituting (9) 
and (12) into (29) gives 

Z(x,y) = Z0) + Z{2) (30) 

where 

70) 

7(2) 

= ^T^f    ^^ f  <*K sgn(K)(K + \y)p4,{K)e-',YLe{ax+ßy)        (31) 
okn- Jo J-k 

= ^2 f dd>e»jdK sgn(K)(K + \y)p;+n(K)^L^ax+^.   (32) 
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In (32), let cp' = <p + n. Exploiting the periodicity of the integrand to change the limits and 
returning to the original dummy variable yields 

■ I     pin fk 

Z(2)=   + 

8A:TT
2 f 

n d0e* /  d* sgn(K)(* + iy)p;Ms+iyLe~i(ax+ß>).     (33) 
JO J-k 

Using figure 1, the reconstruction point (x, y) can be expressed in the rotated coordinates 
(£, j}). Combining with a and ß from (7) gives 

ax + ßy = K^ + (y-k)r,. (34) 

Make the final change of variables K '-*■ —K in (33). Then using (34) and recombining Z(l) 

and Z(2) using (30) yields 

 t       /»2JT /»OO 

2{x, y) = rrr /     WJ* /     dK lP*(*)Gm(ic, n) - P4(-K)G(K, r,))^ (35) 
ükn' Jo J-oo 

where 

- j sgn(K)(* + iy)c'k"e'^-L) \K\ < k 
K,ri        l0 \K\>k. 

Equation (35) gives the reconstruction as the inverse transform of the difference between 
two products. This can be rewritten in terms of the untransformed data using the convolution 
theorem [11]: 

Z(x, y) = ^- r d0 e* r df' [p&')G'{t;' -H,vi)- p;«')C?« - r. i?)] 07) 
Akn Jo J-oo 

where the backpropagation kernel is given by the inverse transform 

I /-OC 

G(t;,n) = — /     G(K,i7)e"*<fc. (38) 

The reconstruction algorithm can be summarized as follows. For a particular view 
direction 4>, the measured scattered field and its complex conjugate are convolved with the 
backpropagation kernel and its complex conjugate as suggested by the inner integral in 
(37). The resulting complex image is then phase shifted by e"*. The procedure is repeated 
for all view directions with the resulting images superimposed. By taking the real and 
imaginary parts of the combined image, low-pass filtered versions of the respective velocity 
components u(x, >•) and v(x. y) are extracted (equation (28)). 

4. Discussion 

Characterizing a moving, inhomogeneous fluid from acoustic transmission measurements is 
an inverse problem with many practical applications. The approach used in the inversion 
is largely predicated on the assumed forward model for the acoustics. If a straight- 
ray transmission model is assumed, then inversion for the vector flow velocity is an 
underdetermined problem. The primary result of this paper is that a complete inversion for 
velocity is possible using a wave-based approach. The analysis establishes the information 
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content of coherent pressure measurements for weak scattering at a single frequency. A 
filtered backpropagation reconstruction algorithm has also been derived. 

The inversion procedure is limited to two-dimensional geometries and assumes noiseless, 
continuous data measured over a continuum of view directions. The reconstructions are 
necessarily low-pass filtered versions of the original fields as details smaller than the 
ensonifying wavelength cannot be recovered. With these caveats, the inversions are unique 
and exact to within the validity of the Born approximation and the assumed forward 
scattering model in (1). Criteria for the validity of the Born approximation are well 
established and generally satisfied when the magnitude of the inhomogeneities is small 
compared to the background sound speed [9]. In deriving (1), terms involving spatial 
derivatives of the velocity are presumed small and have been neglected. The contribution 
to scattering from the neglected terms could become significant at spatial scales comparable 
to the wavelength. Neglecting these terms in the forward scattering model may impose a 
theoretical limitation on the inversion. 

In a practical experiment, the flow could be probed from only a finite number 
of directions. Measurement noise and three-dimensional effects could be significant. 
The accuracy of the reconstruction would depend on the quality and quantity of the 
measurements, and on how the inversion algorithm was implemented. Consequently, the 
accuracy of a reconstruction is strongly dependent on the application. A study of these 
factors is beyond the intended scope of this paper. The presented analysis is not intended 
to model a specific physical situation or experiment, but rather to illustrate the advantages 
of diffraction tomography in as simple a setting as possible. 

Various generalizations of this work can be contemplated. A wave-based approach 
makes possible the use of broad band ensonification. Often there is a duality between 
probing a medium from many directions using a single frequency and probing from a 
limited number of directions using a broad band pulse. Extensions to three dimensions and 
curved recording surfaces should also be possible. A further improved forward model that 
retained some of the terms neglected in (1) is also desirable. 
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